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Introduction

One of the primary dilemmas faced by scientists is whether 
to spend time building new tools to address their questions 
of interest or to tailor their questions to the available tools. In 
the field of systems neuroscience, the disparity between the 
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Abstract
Objective. Closed-loop experiments, in which causal interventions are conditioned on the 
state of the system under investigation, have become increasingly common in neuroscience. 
Such experiments can have a high degree of explanatory power, but they require a precise 
implementation that can be difficult to replicate across laboratories. We sought to overcome 
this limitation by building open-source software that makes it easier to develop and share 
algorithms for closed-loop control. Approach. We created the Open Ephys GUI, an open-
source platform for multichannel electrophysiology experiments. In addition to the standard 
‘open-loop’ visualization and recording functionality, the GUI also includes modules for 
delivering feedback in response to events detected in the incoming data stream. Importantly, 
these modules can be built and shared as plugins, which makes it possible for users to extend 
the functionality of the GUI through a simple API, without having to understand the inner 
workings of the entire application. Main results. In combination with low-cost, open-source 
hardware for amplifying and digitizing neural signals, the GUI has been used for closed-
loop experiments that perturb the hippocampal theta rhythm in a phase-specific manner. 
Significance. The Open Ephys GUI is the first widely used application for multichannel 
electrophysiology that leverages a plugin-based workflow. We hope that it will lower the 
barrier to entry for electrophysiologists who wish to incorporate real-time feedback into their 
research.
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complexity of the system under investigation and the relative 
simplicity of the methods of observation means that the most 
impactful scientific discoveries often go hand-in-hand with 
engineering breakthroughs. In addition to thinking deeply 
about the brain, researchers must be able to modify their 
experimental tools in order to gain new insights from their 
limited views into neural circuitry.

Extracellular electrophysiology, one of the most com-
monly used techniques in systems neuroscience, uses voltage 
measurements to eavesdrop on the spiking activity of neural 
populations distributed across multiple brain regions. The data 
acquisition systems used for such experiments must detect, 
amplify, filter, and digitize dozens or hundreds of voltages in 
parallel, while offering ways to efficiently visualize and store 
these data. Currently, a majority of these systems come from 
commercial vendors, which sell high-quality hardware that 
requires minimal setup and configuration steps. These com-
mercial systems are typically closed-source, which means 
that they can only be modified in ways that the vendors allow. 
Furthermore, any modifications can only be shared with others 
that own the same system. This limitation on sharing methods 
becomes more problematic as the experiments carried out by 
neuroscientists become more complex. For experiments that 
require specific types of data processing to be carried out 
during the experiment, they severely restrict the replicability 
of the findings of that experiment. So far, there has been little 
effort to make components of various commercial systems 
interoperable to overcome this hurdle.

In order to make it easier for electrophysiologists to cus-
tomize and share their data acquisition pipelines, we devel-
oped an open-source suite of tools under the moniker ‘Open 
Ephys.’ The central focus of our platform is the Open Ephys 
graphical user interface (GUI), a plugin-based application 
for data acquisition, processing, and visualization. The GUI 
is written entirely in C++, using the JUCE library (www.
juce.com) and has been developed with many current and 
common software development practices in mind [1]. All of 
the source code, design files, and documentation are avail-
able for free, via GitHub (https://gihub.com/open-ephys) and 
the Open Ephys Wiki (https://open-ephys.atlassian.net). Our 
software is covered by the GNU GPL 3.0 license (www.gnu.
org/licenses/gpl-3.0.en.html) and our hardware is covered by 
the TAPR Open Hardware License (www.tapr.org/ohl.html). 
We chose these restrictive ‘share-alike’ licenses, as opposed 
to more permissive licenses such as BSD or MIT, in order to 
ensure that any modified versions of our tools (including new 
plugins) must also be open source. We believe that the advan-
tages of keeping scientific software open-source strongly out-
weigh the costs, and we would like to encourage others to 
share their source code if they decide to build upon our work.

From the beginning, however, we knew that making our 
software and hardware open source would not be sufficient; 
we also had to include logical interfaces through which 
researchers could add their own modifications. This is espe-
cially important when designing closed-loop experiments, in 
which measured activity is used to determine the time and/
or type (e.g. electrical [2, 3], optogenetic [4, 5], or environ
mental [6]) of perturbation fed back into the system under 

investigation. The space of potential closed-loop perturbations 
is enormous, so each experiment will likely require a unique 
protocol. In our view, an open-source model will help bring 
closed-loop paradigms into mainstream neuroscience. Tools 
that are well designed, open-source, and modular can enable 
scientists to make adjustments to fit the needs of their indi-
vidual research programs.

Just as importantly, closed-loop experiments change the 
nature of how an experiment needs to be published and shared 
(figure 1). With ‘open-loop’ experiments, only the details of 
the experimental setup, a description of the analysis methods, 
and a graphical representation of the data are the ‘scientific 
product’ that is made public. Although it is becoming increas-
ingly common for scientists to share their analysis code as 
well, the code itself is not generally expected to be shared 
in order to make sense of the conclusions of a given study. 
In contrast, closed-loop experiments are defined by the algo-
rithm used to perturb neural activity and all resulting data are 
uninterpretable without access to this algorithm. Therefore, 
closed-loop algorithms need to be published and shared in 
full. This presents a technical challenge because these algo-
rithms interact intimately with many other parts of the data 
acquisition system. This issue will become much easier to 
solve if neuroscientists adopt open standards that allow them 
to share and reuse algorithms for closed-loop control.

Our solution to this problem was to build the Open 
Ephys GUI around a plugin architecture. The GUI’s signal 
processing chain is configured in a modular fashion, using 
modules which can be written, compiled, and distributed sep-
arately from the main ‘host’ application, thanks to a common 
data passing interface. This paradigm is commonly used in 
applications for music production, in which software instru-
ments (signal generators) and effects (signal processors) can 
be mixed and matched. Anyone can write new plugins for the 
most common digital audio workstations (the host applica-
tions), and the same plugins can be loaded into multiple host 
applications at runtime. We felt that a similar approach applied 
to the domain of extracellular electrophysiology would allow 
scientists to maximize the flexibility of their experiments, 
while simplifying the process of publishing and sharing their 
modifications.

Below, we describe the GUI and its associated open-source 
hardware in the following sections:

	 •	Overview of the GUI
	 •	Plugin architecture
	 •	Compatible hardware
	 •	Application: closed-loop stimulation of hippocampus
	 •	Advantages and disadvantages of Open Ephys
	 •	Comparison to other open-source data acquisition  

systems
	 •	Future directions

Overview of the GUI

The Open Ephys GUI was created, first and foremost, as a 
software interface for running and monitoring extracellular 
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electrophysiology experiments. The user interface consists of 
four main elements (figure 2):

	 •	The control panel, at the top of the main application 
window, holds buttons to toggle acquisition and recording, 
a clock to track the amount of time spent acquiring data, 
controls for audio output and recording parameters, and 
displays that indicate CPU usage and available disk 
space.

	 •	The processor list, at the left of the main application 
window, contains a list of data processing modules avail-
able for constructing the signal chain. These are organized 
as ‘Sources,’ ‘Filters,’ ‘Sinks,’ and ‘Utilities.’

	 •	The editor viewport, at the bottom of the main applica-
tion window, provides access to the parameter editors 
for every processing module in the signal chain. Here, 
the user can control which channels are recorded and 
monitored, as well as alter custom settings for individual 
modules.

	 •	The data viewport, which fills the remaining space in 
the main application window, holds tables for visualizers, 
as well as a graph that displays the layout of the signal 
chain at a glance.

When the GUI is launched for the first time, the user must 
configure the signal chain from scratch. The user interface 
for creating the signal chain is modeled after that of Ableton 
Live, a widely used audio production application [7]. Users 
drag and drop modules from the processor list onto the editor 
viewport to build a processing pipeline from left to right. Each 
module is meant to serve a precise, well-defined purpose, 
such as communicating with an external piece of hardware, 
extracting spike waveforms from an incoming data stream, or 
visualizing data in a specific way. This allows a data stream to 
be customized for each experiment, and encourages re-use of 
modules with commonly needed functions. The signal chain 
can be split or merged at any point, allowing multiple pro-
cessing streams to run in parallel. Data can be saved from any 
module in the signal chain, a critical feature for monitoring 

Figure 1.  Comparing open-loop and closed-loop experiments. In open-loop experiments (top), perturbations are carried out ‘blindly,’ 
without taking brain state into account. In closed-loop experiments (bottom), algorithms are used to update the perturbation in real time, 
based on the state of the brain at a given moment. Building closed-loop experiments on top of an open platform is essential for interpreting 
and reproducing their results.

J. Neural Eng. 14 (2017) 045003
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how individual processing elements behave during closed-
loop experiments. On a given processing cycle, each module 
is handed a buffer of continuous data (typically around 20 ms 
long) and a buffer of events (including spikes) that occurred 
within the same timespan. Any modifications that a module 
makes to those buffers are automatically passed to the next 
module in the signal chain.

The GUI is built upon the JUCE Toolkit (www.juce.com),  
JUCE is a well-supported open-source development framework 
that provides the core C++ classes for data handling and cre-
ating versatile user interfaces. Thanks to JUCE, the GUI runs 
equally well on Windows, Linux, and Mac, with minimal need 
for code specialization across the three operating systems. JUCE 
was originally written to facilitate the development of high- 
performance audio processing applications. We have adapted 
many of its audio-specific functions to process neural data. 
Audio data is typically handled at 44.1 kHz and 16 bits, which 
is very similar to the ~30 kHz, 16 bit data streams that are 
the standard for most extracellular electrophysiology experi-
ments. The GUI uses JUCE to interface with the computer’s 
audio card, which generates the precise timing signals required 
to ensure that the signal processing chain can keep up with the 
incoming data stream.

For most electrophysiology experiments, the user will need 
to visualize the continuous local field potential, or LFP, from 
all channels in order to assess electrode placement and signal 
quality. The GUI includes an ‘LFP Viewer’ module that dis-
plays the signal from each recording site in real time (figure 2).  
The LFP Viewer streams data from left to right, like an oscil-
loscope, for windows of 0.25–10 s. Depending on the filter 

settings of the hardware and software, the LFP Viewer can 
be used to display spike waveforms as well as low-frequency 
signals.

Many experiments also require the detection and display 
of spike waveforms in real time. The GUI separates this func-
tionality across three modules: a Filter Node, a Spike Detector, 
and a Spike Viewer. The Filter Node streams the incoming data 
through a bandpass filter; the default settings are 300 Hz for the 
low cut and 6000 Hz for the high cut. This allows the data to be 
thresholded by the Spike Detector, in order to extract the wave-
forms of candidate spikes. The Spike Detector can detect spikes 
on single electrodes, stereotrodes (two linked channels), or tet-
rodes (four linked channels). These spikes are sent as events—
in parallel to the continuous data stream—to the Spike Viewer, 
which displays waveforms and peak-height projection plots 
for stereotrodes and tetrodes. The flexible plugin architecture 
also makes it possible to implement more sophisticated real-
time spike analysis algorithms. For example, the Spike Sorting 
module, which encapsulates spike detection, visualization, and 
sorting into one module, can be used in real time to isolate 
single-unit activity based on spike shape. This feature is criti-
cally important for many acute experiments in which the isola-
tion and characterization of single units in real-time is required.

The GUI has been optimized for multi-channel extracellular 
electrophysiology experiments that use twisted-wire tetrodes 
[8, 9] or silicon probes [10, 11] to detect voltage fluctuations 
inside the brain. Our primary target audience is researchers 
that use these implantable devices in nonhuman model organ-
isms, although the flexible nature of the GUI makes it com-
patible with other sources of continuous voltage traces, such 

Spike Viewer
Displays waveforms and 
projection plots for 
tetrodes, stereotrodes, or 
single electrodes. Can 
exist as a tab in the main 
window, or as a separate 
window.

LFP Viewer
Displays continuous 
waveforms with 
events overlaid 
(translucent yellow 
bar).

Processor list
Displays a list of 
available sources, 
filters, sinks, and 
utilities which can be 
used to construct the 
signal chain.

Control panel
Holds buttons for toggling acquisition 
and recording, as well as indicators for 
disk space and CPU usage.

Editor viewport
Holds the editors for the 
current signal chain, 
which allow the user to 
change processor 
parameters in real time.

Figure 2.  Layout of the Open Ephys graphical user interface (GUI). The major components of the software are labeled. The layout is 
very flexible; the Processor List and Editor Viewport can be hidden when not in use, and any visualizers can either inhabit a table within 
the main window or their own floating window. The software runs on Windows, Linux, and Mac OS X. Pre-compiled executable files are 
available at open-ephys.org, and the source code can be viewed on GitHub (github.com/open-ephys/plugin-GUI).
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as human scalp EEG. By creating new software plugins, the 
GUI could be used as an interface for existing EEG hardware 
from companies such as OpenBCI (http://openbci.com), g.Tec 
(www.gtec.at), or EMOTIV (www.emotiv.com).

To obtain the software, executable files for the GUI can be 
downloaded from the Open Ephys website (http://open-ephys.
org/gui). Alternatively, the GUI can be compiled from the source 
code downloaded from GitHub (https://github.com/open-ephys/
plugin-GUI). On Windows, compiling the GUI requires Visual 
Studio; on Mac, Xcode is required; on Linux, the standard GNU 
command-line tools (e.g. make, gcc) are sufficient. Development 
of the GUI occurs in a distributed fashion at institutions around 
the world. Efforts are coordinated via GitHub, as well as the 
Open Ephys mailing list (open-ephys@googlegroups.com).

Plugin architecture

To ensure that the GUI can be adapted to the requirements of 
different experiments, we constructed it around a plugin archi-
tecture. Under this paradigm, everyone using the GUI shares the 
same host application, while data processing modules are com-
piled separately and loaded from within the host application by 
the user when desired. This means that the core application can 
remain free of the library dependencies introduced by the plugins.

A variety of useful plugins are provided when the applica-
tion is downloaded (table 1). New modules can be built indi-
vidually and distributed as binary files, provided they were 

compiled on the same operating system as the host applica-
tion. The plugins are shared as dynamically loaded libraries 
(DLLs) on Windows, dynamic libraries (DYLIBs) on Mac, 
and shared objects (SOs) on Linux.

All plugins are classified at either Sources, Filters, and 
Sinks (figure 3):

	 •	Sources bring data into the signal chain by filling an 
empty buffer of continuous samples and an empty buffer 
of events on each processing cycle. There is an option 
of creating a separate thread for each source, which  
simplifies the process of communicating with external 
devices that run on a different clock than the host applica-
tion. Data acquired via the thread will be automatically 
fed into the GUI’s signal chain. Example sources include 
the ‘Rhythm FPGA’ thread, which communicates with 
hardware devices running Intan’s Rhythm firmware (see 
next section); the File Reader, which loads data from 
a file; and the Network Source, which receives events 
from another computer. If a developer wishes to create a 
Source module that interfaces with proprietary hardware, 
they can do so by calling a separate, closed-source DLL 
to communicate with the device.

	 •	Filters modify the incoming data stream in some way 
or detect events in the continuous data, such as spikes 
or oscillations. Example filters include the Filter Node, 
which applies a bandpass filter to all channels; the 
common average reference (CAR), which subtracts the 

Table 1.  Available plugins. List of plugins currently included with the Open Ephys GUI.

Type Name Function

Source Rhythm FPGA Reads data from a device running Intan’s Rhythm FPGA firmware; includes the Open Ephys 
acquisition board and the Intan RHD2000 Evaluation Board.

File Reader Reads data from a file.
Network Events Reads events from a TCP port, either from another program running locally, or another 

machine. Can be used to signal the start of an experimental epoch or stimulus condition.
Serial Port Reads data from a serial port. Can be used to track eye position or location in a virtual maze.

Filter Spike Detector Extracts spike events from continuous data.
Common Avg Ref Subtracts the average of all channels or a subset of channels. Can be used to remove 

common-mode noise from a recording.
Channel Map Re-orders channels in continuous data.
Bandpass Filter Filters data between two frequencies.
Phase Detector Emits events when it detects peaks, troughs, or zero-crossings in a continuous signal.
Rectifier Outputs the absolute value of a continuous signal.
Spike Sorter Extracts spike events from continuous data, and allows the user to define unit boundaries in 

PCA or waveform space.
Sink Arduino Output Events within the GUI are used to trigger digital pulses from an Arduino microcontroller 

(www.arduino.cc)
Spike Viewer Displays spike waveforms and peak heights for stereotrodes and tetrodes.
Event Broadcaster Broadcasts events over a network connection.
LFP Viewer Displays continuous signals.
Pulse Pal Events within the GUI are used to trigger channels on a Pulse Pal, an open-source 

stimulation device (www.sanworks.io)
Record engine Open Ephys Format Fault-tolerant data format designed for the Open Ephys GUI

Binary Format Flat binary file of int16s
NWB Format Neurodata Without Borders, an HDF5-based format designed to facilitate data-sharing for 

neurophysiology expriments
Kwik Format An HDF5-based format designed for KlustaKwik.
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average signal to remove artifacts; and the Spike Detector, 
which emits spike events whenever a threshold crossing 
is detected on a particular channel or subset of channels.

	 •	Sinks interface with elements outside the signal chain, 
such as a display, a stimulation device, or a network port. 
Example sinks include the LFP Viewer, which allows 
the user to visualize continuous data streams; the Spike 
Viewer, which displays spike waveforms in real time; and 
the Pulse Pal Output, which uses events to trigger stimu-
lation from a Pulse Pal, an open-source pulse generator 
created by Josh Sanders of Sanworks (www.sanworks.
io).

In addition to Sources, Filters, and Sinks, it is also possible 
to create plugin ‘Record Engines’ and ‘File Sources.’ Record 
Engines and File Sources specify how continuous, spike, and 
event data is written to or loaded from disk, and make it pos-
sible for users to customize the data format of the GUI. The 
GUI already includes four Record Engines, which specify the 
output data formats:

	(1)	The Open Ephys Format, the default format, is a fault-
tolerant format built specifically for the GUI. This format 
saves the data in blocks of 1024 samples, each of which 
includes a timestamp and a readily identifiable ‘record 
marker,’ so that data can still be recovered if part of the 
file becomes corrupted.

	(2)	The Binary Format saves continuous data as flat files of 
int16s, and is used by the spike sorting package Kilosort 
[12].

	(3)	Neurodata without borders (NWB) is an HDF5-based 
format designed to facilitate data sharing between neuro-
physiology laboratories [13].

	(4)	Kwik is a deprecated HDF5-based format originally devel-
oped for the KlustaKwik suite of spike sorting tools [14].

More information on data formats can be found on the 
Open Ephys wiki (https://open-ephys.atlassian.net/wiki/
display/OEW/Data+format).

One important challenge when designing the plugin system 
was the application programming interface (API), which 
plugins use to communicate with the GUI. Since few neuro-
scientists are proficient with software development, the basic 
methods and workflow to create a plugin need to be straight-
forward and easy to understand. At the same time, the inter-
face must also be flexible enough that it does not impose too 
many limitations on plugin capabilities.

To address this issue, we created a complete C++ interface 
for plugins, instead of using more traditional C-based plugin 
libraries. While this does impose some restrictions, such as 
the need to build the plugins with the same compiler as the 
core GUI, it makes it possible for plugins to take advantage 
of the class inheritance capabilities of C++. At its core, every 
plugin is simply a C++ class derived from a base class which 
contains all the needed functions for the plugin to integrate 
with the GUI. A plugin developer must only provide overrides 
to a small set of virtual methods to have a working processor. 
At the same time, there exist a number of optional methods, 
already defined in the base classes, that can be redefined in the 
plugin to achieve more complex functionality. C++ inherit-
ance structure also allows the base classes to provide easy-
to-use helper methods without the need for the programmer 
to know the internal implementation details. The use of a 
C++ interface also prevents bloating of the compiled bina-
ries for the GUI and the modules. Initial implementations of 
the plugin architecture required compiling the JUCE library 
with each individual plugin, leading to significant increases in 
compiled binary sizes. The C++ interface removes the need 
to re-compile JUCE with each plugin and allows each plugin 
to directly access the JUCE classes through the GUI. This, 

Figure 3.  The Open Ephys plugin architecture. The Open Ephys GUI allows users to process data using a flexible, modular signal chain. 
‘Source’ modules (orange) can be swapped out to allow the signal chain to receive data from different sources. ‘Filter’ modules (blue) 
can be mixed and matched to determine the real-time data processing steps that occur. And ‘Sink’ modules (green) can be used to control 
external hardware, such as a visual display or a stimulating laser.
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coupled with the designed inheritance scheme, allows plugins 
to integrate seamlessly into the host application, both from a 
developer’s and end-user’s perspective.

To further simplify up the process of developing new 
plugins, we provide a Plugin Generator GUI. The Plugin 
Generator allows developers to walk through the process 
of plugin creation and configuration with a user-friendly 
visual interface. The application gives users the opportunity 
to specify the type of plugin they wish to create (Source, 
Filter, Sink, Record Engine, File Source), the name of the 
plugin, and the parameters that can be accessed by the user 
(boolean, continuous, or discrete). Once the configuration is 
finished, the Plugin Generator automatically generates the 
C++ header and implementation files needed to build the 
plugin. The Plugin Generator allows user to easily change 
the plugin’s UI: they can add control components (sliders, 
buttons, etc) that can be bound to any of the plugin’s param
eters, change the look and feel of all components at once, 
or create the plugin’s layout using one of the provided tem-
plates. From that point, the developer needs only to add 
C++ code into the ‘process’ method to define the plugin’s 
functionality.

Those wishing to develop new plugins are encouraged to 
explore the following resources on our wiki:

	 •	An overview of the plugin architecture (https://open-ephys.
atlassian.net/wiki/display/OEW/Plugin+architecture)

	 •	A tutorial for adding new plugins (https://open-ephys.
atlassian.net/wiki/display/OEW/Tutorial%3A+Add+a+
custom+processor)

	 •	Instructions for using the Plugin Generator (https://open-
ephys.atlassian.net/wiki/display/OEW/Plugin+Generator)

The process of checking which plugins are present and 
loading them is handled by a Plugin Manager class inside 
the host application. Since the Open Ephys GUI is frequently 
being improved, the plugin API may sometimes be updated, 
thus rendering plugins incompatible. The Plugin Manager’s 
loading process includes a version check that ensures that 
all loaded plugins are compatible with the current version of 
the GUI, and informs the user when a plugin’s API does not 
match that of the host applications.

The GUI makes it easy for signal chains to be saved and 
re-loaded at runtime, but this may not be possible when 
signal chain configurations are shared with other users 
who do not have the same plugins available. In this case, 
the Plugin Manager inserts a dummy processor into the 
chain with information about the required plugin. The user 
can then locate the plugin or decide to do without it. Data 
acquisition cannot proceed unless the dummy processor is 
replaced or removed.

Together, the modularity of the GUI, API, and Plugin 
Generator simplify the development process for users. If a 
module with the desired functionality is not available, a user 
can create a new one by copying the source code for any 
existing module and changing the functionality to suit their 
requirements. There is no need to understand the inner work-
ings of the entire application (figure 4). Only knowledge of 
the standardized interfaces for passing data between modules 

is required, allowing the GUI to be modified by users with 
varying levels of programming skill. As of January 2017, the 
GUI’s source code has been forked 130 times on GitHub, and 
10 different research groups have contributed plugins to the 
main repository.

Compatible hardware

The Open Ephys GUI was designed to be agnostic to the 
origin of the incoming data. By creating a new Source plugin, 
it is possible to interface with virtually any hardware device 
that generates regularly sampled multichannel data. By swap-
ping out the source modules, one can use an identical signal 
chain with a variety of different inputs.

Although they have the option to develop new Source 
plugins, most users prefer to collect data with the Open Ephys 
acquisition board, an open-source interface between up to 8 
Intan amplifier chips and a computer’s USB port (figure 5(a)). 
Intan chips encapsulate much of the functionality of traditional 
data acquisition systems inside a 8  ×  8 mm package [15, 16]. 
Open Ephys uses Intan’s RHD-series chips, first released in 
2012, which include a bank of analog filters and amplifiers for 
each of 32 or 64 channels. The filtered and amplified signals 
are sent to a multiplexer, which connects them one by one to 
an analog-to-digital converter. Samples of each channel are 
represented as 16-bit integers, which are transmitted serially 
over a wire tether. The use of low-voltage differential sign-
aling (LVDS) facilitates reliable data transmission over long, 
thin conductors.

Headstages compatible with the Open Ephys system con-
sist of one or more Intan chips, an ‘electrode-facing’ con-
nector, and a ‘tether-facing’ connector. The electrode-facing 
connector must include one conductor for each electrode, 
which has electrical continuity with one of the inputs on 
the Intan chip. The tether-facing connector must be a 12-pin 
Omnetics connector (product #A79623-001) that interfaces 
with cables conforming to the Intan SPI standard (www.intan-
tech.com/RHD2000_SPI_cables.html).

Most of the existing headstage designs (either from Open 
Ephys or Intan) use 16 or 32-channel Omnetics connectors 
with 0.025″ pitch on the electrode-facing end. These connec-
tors are already widely adopted in neuroscience, due to the 
reliability of their connection over a high number of mating 
cycles. Because they use the same reference and ground con-
figuration, these headstages can be immediately swapped 
in for headstages made by Plexon, Neuralynx, Blackrock, 
Ripple, and Triangle Biosystems. Because the headstage 
designs are open source, it is possible to create versions that 
interface with other types of connectors. Recently, an isolation 
and waterproofing system was developed to make Intan-based 
headstages safe to use in clinical applications with high- 
density ECoG arrays [17].

The Open Ephys acquisition board provides four head-
stage ports, each of which can interface with up to two Intan 
chips. If eight 64-channel chips are used, a total of 512 
channels can be recorded simultaneously. Data acquisition 
is driven by an Opal Kelly XEM-6310 FPGA module, run-
ning a modified version of Intan’s Rhythm FPGA firmware 
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(https://github.com/open-ephys/rhythm). The FPGA 
ensures that data acquisition is synchronized between all of 
the Intan chips, and serializes the data for transmission via 
a USB 3.0 port.

The acquisition board can be synchronized with external 
devices via I/O boards, which are connected to the main board 
via standard HDMI cables. The I/O boards provide BNC ter-
minal connectors for up to eight  ±  5 V analog signals, or eight 
5 V digital signals. These auxiliary inputs are sampled at the 
same rate as the neural data, typically 30 kHz.

The Open Ephys acquisition board has been used by over 
100 labs to collect data from a variety of model organisms 
(figure 5(b)). Based on feedback from these users, as well as 
direct comparisons with commercial data acquisition hard-
ware (www.open-ephys.org/blog/2014/7/9/open-ephys-and-
neuralynx-a-head-to-head-comparison), we are confident 
that Open Ephys data quality is at least as good as that of 
proprietary systems. In addition, many commercial vendors 
now use Intan chips to drive data acquisition, meaning their 
analog signal processing front-end is identical to that of 
Open Ephys.

Application: closed-loop stimulation  
of hippocampus

The GUI’s real-time feedback engine is built on top of JUCE’s 
audio processing library, which can handle complex floating 
point data processing steps in real time. The requirements 
for audio processing—in terms of sample rate, bit depth, and 
channel count—are in a similar range as those for neural data. 
We were therefore able to develop closed-loop stimulation 
algorithms on top of the existing JUCE classes. The basic 
approach involves creating a Filter plugin that can detect 
events in the neural data, then using a Sink plugin to control 
external hardware capable of delivering feedback to the brain.

One of the first experiments we carried out demonstrated 
the efficacy of Open Ephys for closed-loop stimulation 
(figure 6(a)). In the lab of Matthew Wilson at MIT, we created 
a software module that could detect different phases of the 
hippocampal theta rhythm in real time, and deliver optoge-
netic stimulation with a ~20 ms delay (1/6th of an ~8 Hz 
theta cycle). Closed-loop feedback allowed us to probe the 
function of theta rhythms with enhanced precision relative 

Figure 4.  Internal structure of the Open Ephys GUI. (a) Diagram of the major C++ classes that comprise the GUI. Words in black 
are names defined by the GUI; words in grey are JUCE classes on top which these components are built. The ‘ProcessorGraph’ is the 
class in which the signal chain is built. Developers can add new functionality by creating new plugins (Sources, Filters, or Sinks) for the 
ProcessorGraph, without needing to understand the structure of the rest of the application. (b) Example plugin code for implementing a 
rectifier. Only the code that is shown in the example needs to be edited to implement a minimal working plugin.
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to previous open-loop interventions [4]. Carrying out this 
experiment involved the use of four plugins: (1) a Rhythm 
FPGA module, to acquire neural data from the Open Ephys 
acquisition board; (2) a Bandpass Filter module, to filter 
the incoming data in the theta range (4–12 Hz); (3) a Phase 
Detector module, to emit events at the peaks and troughs of 
the theta wave; and (4) a Pulse Pal module, to convert GUI 
events into 10 ms pulses capable of driving an external blue 
LED (Plexon). The LED was coupled to a fiber optic cable 
that terminated near the recording site, which resulted in 
phase-specific optogenetic stimulation of hippocampal inhib-
itory interneurons.

Minimum closed-loop latencies are constrained by both 
the size of the software buffer and the USB communication 
protocol. The software buffer determines the number of con-
tinuous data samples that are delivered to the plugins on each 
processing cycle. The default buffer size is 21 ms, but it can 
be manually configured at runtime to be anywhere between 
3 ms and 42 ms. Decreasing the buffer size will lower the 

upper bound on closed-loop response times, but will increase 
the chance that processing will not be completed on a given 
callback. If the signal chain includes a high number of chan-
nels or complex closed-loop algorithms, a larger buffer may 
be necessary. To ensure that all buffers can be processed 
safely, the GUI includes a visual CPU meter that displays the 
amount of time spent processing each buffer as a percentage 
of the overall buffer size. So, if it takes 3 ms to process a 21 ms 
buffer, the CPU meter will be at 14%.

In addition to the software buffer, closed-loop latencies 
also limited by delays inherent in the USB communication 
protocol. When using the Open Ephys acquisition board, data 
is sent to the GUI in 10 ms chunks. Thus, even when a soft-
ware buffer of 5 ms is used, mean closed-loop latency is still 
around 10 ms (figure 6(b)). There is substantial handshaking 
overhead involved in each transfer, so lowering the chunk size 
does not lead to a decrease in latency. This limitation can be 
overcome by using a faster hardware data transfer interface, 
such as Ethernet or PCI express.

a

b

1

2

3

4

Figure 5.  Open Ephys hardware and example recordings. (a) A typical hardware configuration include an acquisition board (1), computer 
running the Open Ephys GUI (2), an I/O board for synchronization with external devices (3), and a headstage containing an Intan chip that 
interfaces with electrodes implanted in the brain (4). Photo credit: Jeff Henkel. (b) 1 s of example data from three model organisms: mouse 
barrel cortex (top), macaque neocortex (middle), and zebra finch LMAN (bottom).
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Although implementing closed-loop algorithms on data 
transmitted via USB involves inherent and uncertain delays 
of approximately 20 ms, these latencies are acceptable for a 
wide range of applications. The ability to trigger stimulation 
based on brain states opens up a large class of experiments 
that are not accessible to the typical neuroscientist. These 
include protocols for implementing brain machine interfaces 
[18, 19], adaptive sampling of a stimulus space [20, 21], and 
entrainment or disruption of intrinsic oscillations [6, 22–24]. 
Making closed-loop experiments feasible for a wider range 
of researchers was one of the primary goals of developing the 
Open Ephys GUI. Having real-time access to data in software 
also makes it easier to prototype feedback algorithms that 
can later be transferred to hardware. And for certain types of 
experiments, such as real-time decoding of spike trains, hard-
ware implementations are impractical due of the complexity 
of the generalized linear models or Bayesian inference algo-
rithms required [25, 26].

Advantages and disadvantages of Open Ephys

For labs looking to purchase a new multichannel electrophysi-
ology system, Open Ephys offers three advantages over its 
closed-source commercial counterparts:

	 •	Low cost. A complete Open Ephys system can be obtained 
for less than $100 per channel, compared to commercial 
systems costing $1000 per channel or more. For labs on 
a tight budget, Open Ephys may be the only option for 
setting up high-channel-count experiments. For labs that 
want to add recording capabilities to multiple rigs in par-
allel, our system is an attractive choice. As the throughput 
of systems neuroscience research continues to expand—
both in terms of the number of simultaneously recorded 
channels, and the number of subjects per experiment—
Open Ephys may be the best choice for growing a lab’s 
electrophysiology resources.

Figure 6.  Closed-loop feedback with the GUI. (a) The first published closed-loop experiment carried out with Open Ephys. An electrode 
implanted in the CA1 region of mouse hippocampus was used to trigger an LED light pulse that activated local inhibitory neurons on the 
peak of the theta oscillation. The flexibility of the Open Ephys software made it straightforward implement the closed-loop algorithm 
for detecting peaks of the theta wave. Figure adapted from [4]. CC BY 4.0. (b) Histograms of round-trip (event-to-stimulation) latencies 
for different software buffer sizes. Mean latencies are shown as vertical blue lines. Input signal: 100 Hz sine wave passed through a 
128-channel silicon probe in saline, sampled for 30 s at 30 kHz with the Open Ephys acquisition board. Stimulation occurred on each peak 
of the sine wave (Phase Detector plugin) using an Arduino Uno communicating via USB (Arduino Output plugin). Clustering around two 
to three values is likely due to the use of a regularly spaced input signal (100 ms between peaks).
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	 •	Transparency. Because the designs are freely available, 
Open Ephys encourages scientists to look ‘under the 
hood’ and understand the details of its implementation. 
This not only makes for a better-educated user base, but 
also alleviates the dependency on a particular company 
to upgrade functionality or fix bugs. The one caveat to 
this is the Intan amplifier chips in the headstages, which 
do contain highly customized proprietary technology. 
But this is also a problem for the numerous commercial 
companies that are using Intan chips in their hardware.

	 •	Flexibility. Not only is our hardware and software 
completely open source, but it was designed from the 
start with modularity in mind. The acquisition board is  
compatible with many types of headstages, and the 
software is built around processor modules that can be 
swapped in and out independently. Hardware and software 
modules designed by various labs can be made immedi-
ately accessible to the broader community, reducing the 
amount of time spent on redundant development. It is 
highly possible that, in the future, Open Ephys hardware 
will be widely used with a different piece of software. Or, 
the hardware could be made obsolete by new technolo-
gies, but the software will live on as a separate entity.

Of course, there are several drawbacks of our platform that 
must be taken into consideration:

	 •	No guarantee of support. Open Ephys has grown its 
user base substantially in recent years, but we do not have 
any full-time employees capable of providing support. 
However, there are a number of proficient users around 
the world who are often happy to volunteer their time to 
answer questions posted on GitHub or the Open Ephys 
mailing list.

	 •	Developed by amateur engineers. Open Ephys was 
developed by neuroscientists for neuroscientists, which 
means some of the design decisions may not be optimal 
from an engineering perspective. Anyone who chooses to 
use our system must accept responsibility for validating 
the features they plan to utilize. This should not be a 
substantial burden, but labs that aren’t willing to put in 
the extra consideration may be better off buying a com-
mercial system.

	 •	Steeper learning curve. Most commercial recording 
systems have a strictly enforced workflow, which enables 
users to acquire data by pressing a single button. In its 
default state, the Open Ephys GUI cannot record data 
without adding at least one processor to the signal chain; 
many other common functions require selecting the 
appropriate plugins in the correct order. This may not be 
intuitive to users accustomed to pre-configured software.

	 •	Performance hit from modular architecture. The 
plugin-based design of the Open Ephys GUI carries some 
degree of overhead, likely around a few milliseconds per 
buffer, although this will be highly context-dependent. 
Building the GUI with a more stripped-down architecture 
would speed up each processing cycle, but at the cost of 
reduced cross- modularity. Programming the GUI for use 
with a real-time operating system, as RTXI has done in 

their closed-loop electrophysiology software (see next 
section), would further reduce processing latencies, but 
would force us to forgo cross-platform compatibility.

Comparison to other open-source data acquisition 
platforms

How does Open Ephys compare to other open-source 
recording platforms? The most similar is NeuroRighter imple-
mented by the Potter Lab at Georgia Tech, but no longer under 
development [27, 28]. Like Open Ephys, NeuroRighter offers 
open-source hardware and software optimized for multielec-
trode recordings and closed-loop stimulation. NeuroRighter is 
more mature, having been in use for over 7 years. However, 
there are two aspects of NeuroRighter that make it less flex-
ible than Open Ephys: its reliance on National Instruments 
digitization hardware, and its use of the C# programming 
language, which is Windows-specific. The former also makes 
the system more costly: NeuroRighter costs around $10 000 
for 64 channels, whereas a 64-channel Open Ephys system 
can be purchased for less than $3000. The use of Intan chips 
in our headstages makes Open Ephys more compact and more 
affordable. Nevertheless, the success of NeuroRighter was an 
inspiration during the early days of developing Open Ephys, 
especially their commitment to making tools for delivering 
closed-loop feedback more accessible.

The real-time experiment interface (RTXI) [29] is another 
mature (10+  years) open-source data acquisition platform 
available for intracellular and extracellular electrophysi-
ology (http://rtxi.org). RTXI provides hard real-time closed-
loop control, and has a complete plugin architecture and 
development API, with which users have contributed over 
50 modules (http://github.com/rtxi). RTXI’s core is written 
in C and uses the Qt/QwT GUI frameworks. RTXI’s plugin 
architecture is written in C++ and has many similarities to 
the Open Ephys plugin architecture. A C++ class called 
DefaultGUIModel is abstracted by each custom plugin and 
provides virtual methods that can be overloaded to cus-
tomize each state the plugin can be in (initialization, exe-
cution, pause, unload/halt) and the plugin’s input/output 
connections. DefaultGUIModel automatically generates a 
GUI for the custom plugin when compiled, making it easier 
for novice users to create their own custom plugins quickly. 
Users interested in adding additional online data visualiza-
tion elements can easily incorporate stock elements from the 
Qt and QwT GUI frameworks.

In RTXI, unlike Open Ephys, modules can be compiled 
and dynamically loaded and inserted into the signal chain 
without halting execution of the system. Template Makefiles 
are provided to users to simplify the process of compiling 
custom plugins. Loading and unloading of modules into the 
RTXI workspace is managed by the core PluginManager 
class, which provides a thread-safe mechanism for modifying 
the signal chain on-the-fly. Connections between loaded 
modules and the data acquisition card channels are created 
by connecting an output data stream from the data acquisition 
card or a loaded module to the input data stream of another 
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module of data acquisition card channel. RTXI is feature-rich 
and flexible, with a mature plugin architecture and develop-
ment API. However, its key limitation is the dependence upon 
commercial hardware (e.g. National Instruments) for data 
acquisition.

More recently, the Boyden Lab at MIT, in collabora-
tion with LeafLabs, developed an open-source, open-loop 
1024-channel recording system called Willow [30]. Willow 
also uses Intan chips to handle the front-end amplification and 
filtering, but it sends the data directly to a solid-state drive, 
bypassing the need for a separate computer to acquire data. 
A copy of the data can also be sent over Ethernet for real-
time visualization. Willow is optimized for reliability when 
recording high channel counts, but it lacks the modularity and 
extensibility of Open Ephys at the software level.

At least two commercial data acquisition platforms pro-
vide open-source software: Ripple, LLC (http://rippleneuro.
com) and SpikeGadgets (www.spikegadgets.com/main/home.
html). This makes it easier for users to modify the software 
to suit their needs, and to better understand how their data is 
being processed. However, without a modular, plugin-based 
architecture, modifications are not as straightforward to make 
or share as they are with Open Ephys.

A key advantage of open-source tools is that they can 
generally be made to interoperate. If someone had the need 
for it, they could make Open Ephys interface with any of the 
platforms listed above. Our hardware is meant to be hacked, 
so we have made the necessary details of the communication 
protocols available to all. Likewise, the software was intended 
to be used with a variety of data sources. Creating a module to 
interface with a different type of hardware is a straightforward 
process, given adequate knowledge of C++.

Future directions

Our biggest challenge is further lowering the barrier to entry 
for creating new plugins for the Open Ephys GUI. Currently, 
developing a new module requires knowledge of C++, a 
low-level programming language that is not typically taught 
to neuroscientists. Researchers in systems neuroscience are 
more often familiar with high-level languages, such as Python, 
Julia, and Matlab. By making plugin development compat-
ible with these languages, Open Ephys has the opportunity 
to take advantage of the massive amount of existing analysis 
code. Our software is already plugin-based and highly mod-
ular. Once we make it interface with programming languages 
everyone already uses for data analysis, this analysis code can 
be turned into modules for running closed-loop experiments.

Another limitation of the Open Ephys platform is the 
relatively high closed-loop roundtrip times necessitated by 
our use of the USB port for data transmission (~20 ms). By 
switching to a PCI express (PCIe) interface, which is included 
in most desktop computers and has a much higher bandwidth 
than USB, it will be possible to reduce roundtrip times to 
less than a millisecond. A prototype PCIe-based acquisition 
system is currently under development, which will be able to 
stream thousands of channels to the GUI with latencies in the 

hundreds of microseconds. Having access to the data on these 
timescales opens up even more possibilities for closed-loop 
feedback [31].

In general, our goal for the future is to make it as simple as 
possible for scientists to create new plugins for the GUI and to 
modify its existing functionality. Plugins should be able to be 
written in high-level languages and provide access to the data 
within a few samples, rather than the ~20 ms blocks of sam-
ples that are currently required. Given the convenience of a 
plugin architecture for building and sharing real-time analysis 
algorithms, we hope that Open Ephys will help to lower the 
barriers for electrophysiologists who wish to carry out closed-
loop experiments in their labs.
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