
Journal of Neural Engineering

PAPER • OPEN ACCESS

Open Ephys: an open-source, plugin-based
platform for multichannel electrophysiology
To cite this article: Joshua H Siegle et al 2017 J. Neural Eng. 14 045003

View the article online for updates and enhancements.

Related content
Open Ephys electroencephalography
(Open Ephys + EEG): a modular, low-cost,
open-source solution to human neural
recording
Christopher Black, Jakob Voigts, Uday
Agrawal et al.

-

Falcon: a highly flexible open-source
software for closed-loop neuroscience
Davide Ciliberti and Fabian Kloosterman

-

Closed-loop optical neural stimulation
based on a 32-channel low-noise
recording system with online spike sorting
T K T Nguyen, Z Navratilova, H Cabral et
al.

-

Recent citations
Open Science Meets Stem Cells: A New
Drug Discovery Approach for
Neurodegenerative Disorders
Chanshuai Han et al

-

Falcon: a highly flexible open-source
software for closed-loop neuroscience
Davide Ciliberti and Fabian Kloosterman

-

This content was downloaded from IP address 50.233.151.163 on 05/03/2018 at 19:03

https://doi.org/10.1088/1741-2552/aa5eea
http://iopscience.iop.org/article/10.1088/1741-2552/aa651f
http://iopscience.iop.org/article/10.1088/1741-2552/aa651f
http://iopscience.iop.org/article/10.1088/1741-2552/aa651f
http://iopscience.iop.org/article/10.1088/1741-2552/aa651f
http://iopscience.iop.org/article/10.1088/1741-2552/aa7526
http://iopscience.iop.org/article/10.1088/1741-2552/aa7526
http://iopscience.iop.org/article/10.1088/1741-2560/11/4/046005
http://iopscience.iop.org/article/10.1088/1741-2560/11/4/046005
http://iopscience.iop.org/article/10.1088/1741-2560/11/4/046005
http://dx.doi.org/10.3389/fnins.2018.00047
http://dx.doi.org/10.3389/fnins.2018.00047
http://dx.doi.org/10.3389/fnins.2018.00047
http://iopscience.iop.org/1741-2552/14/4/045004
http://iopscience.iop.org/1741-2552/14/4/045004

1 © 2017 IOP Publishing Ltd  Printed in the UK

Introduction

One of the primary dilemmas faced by scientists is whether
to spend time building new tools to address their questions
of interest or to tailor their questions to the available tools. In
the field of systems neuroscience, the disparity between the

Journal of Neural Engineering

Open Ephys: an open-source, plugin-based
platform for multichannel electrophysiology

Joshua H Siegle1, Aarón Cuevas López2,6, Yogi A Patel3,
Kirill Abramov4, Shay Ohayon5 and Jakob Voigts5

1  Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA 98109, United States of America,
jsiegle on GitHub
2  Universitat Politècnica de València, Camí de Vera, s/n, 46022 València, Spain, aacuevas on GitHub
3  Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States of America, yapatel
on GitHub
4  Zaporizhzhya State Engineering Academy, 69006, Sobornyi Ave, 226, Zaporizhia, Zaporiz’ka oblast,
Ukraine, septen on GitHub
5  Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States of
America, shayo and jvoigts on GitHub
6  Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal, s/n, 03550 Sant Joan
d’Alacant, Alicante, Spain, aacuevas on GitHub

E-mail: joshs@alleninstitute.org (Joshua H Siegle)

Received 16 November 2016, revised 12 January 2017
Accepted for publication 7 February 2017
Published 5 June 2017

Abstract
Objective. Closed-loop experiments, in which causal interventions are conditioned on the
state of the system under investigation, have become increasingly common in neuroscience.
Such experiments can have a high degree of explanatory power, but they require a precise
implementation that can be difficult to replicate across laboratories. We sought to overcome
this limitation by building open-source software that makes it easier to develop and share
algorithms for closed-loop control. Approach. We created the Open Ephys GUI, an open-
source platform for multichannel electrophysiology experiments. In addition to the standard
‘open-loop’ visualization and recording functionality, the GUI also includes modules for
delivering feedback in response to events detected in the incoming data stream. Importantly,
these modules can be built and shared as plugins, which makes it possible for users to extend
the functionality of the GUI through a simple API, without having to understand the inner
workings of the entire application. Main results. In combination with low-cost, open-source
hardware for amplifying and digitizing neural signals, the GUI has been used for closed-
loop experiments that perturb the hippocampal theta rhythm in a phase-specific manner.
Significance. The Open Ephys GUI is the first widely used application for multichannel
electrophysiology that leverages a plugin-based workflow. We hope that it will lower the
barrier to entry for electrophysiologists who wish to incorporate real-time feedback into their
research.

Keywords: electrophysiology, software, open source, closed loop

(Some figures may appear in colour only in the online journal)

J H Siegle et al

Printed in the UK

045003

JNEIEZ

© 2017 IOP Publishing Ltd

14

J. Neural Eng.

JNE

1741-2552

10.1088/1741-2552/aa5eea

Paper

4

Journal of Neural Engineering

IOP

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

2017

1741-2552/17/045003+13$33.00

https://doi.org/10.1088/1741-2552/aa5eeaJ. Neural Eng. 14 (2017) 045003 (13pp)

mailto:joshs@alleninstitute.org
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/aa5eea&domain=pdf&date_stamp=2017-06-05
publisher-id
doi
http://creativecommons.org/licenses/by/3.0
https://doi.org/10.1088/1741-2552/aa5eea

J H Siegle et al

2

complexity of the system under investigation and the relative
simplicity of the methods of observation means that the most
impactful scientific discoveries often go hand-in-hand with
engineering breakthroughs. In addition to thinking deeply
about the brain, researchers must be able to modify their
experimental tools in order to gain new insights from their
limited views into neural circuitry.

Extracellular electrophysiology, one of the most com-
monly used techniques in systems neuroscience, uses voltage
measurements to eavesdrop on the spiking activity of neural
populations distributed across multiple brain regions. The data
acquisition systems used for such experiments must detect,
amplify, filter, and digitize dozens or hundreds of voltages in
parallel, while offering ways to efficiently visualize and store
these data. Currently, a majority of these systems come from
commercial vendors, which sell high-quality hardware that
requires minimal setup and configuration steps. These com-
mercial systems are typically closed-source, which means
that they can only be modified in ways that the vendors allow.
Furthermore, any modifications can only be shared with others
that own the same system. This limitation on sharing methods
becomes more problematic as the experiments carried out by
neuroscientists become more complex. For experiments that
require specific types of data processing to be carried out
during the experiment, they severely restrict the replicability
of the findings of that experiment. So far, there has been little
effort to make components of various commercial systems
interoperable to overcome this hurdle.

In order to make it easier for electrophysiologists to cus-
tomize and share their data acquisition pipelines, we devel-
oped an open-source suite of tools under the moniker ‘Open
Ephys.’ The central focus of our platform is the Open Ephys
graphical user interface (GUI), a plugin-based application
for data acquisition, processing, and visualization. The GUI
is written entirely in C++, using the JUCE library (www.
juce.com) and has been developed with many current and
common software development practices in mind [1]. All of
the source code, design files, and documentation are avail-
able for free, via GitHub (https://gihub.com/open-ephys) and
the Open Ephys Wiki (https://open-ephys.atlassian.net). Our
software is covered by the GNU GPL 3.0 license (www.gnu.
org/licenses/gpl-3.0.en.html) and our hardware is covered by
the TAPR Open Hardware License (www.tapr.org/ohl.html).
We chose these restrictive ‘share-alike’ licenses, as opposed
to more permissive licenses such as BSD or MIT, in order to
ensure that any modified versions of our tools (including new
plugins) must also be open source. We believe that the advan-
tages of keeping scientific software open-source strongly out-
weigh the costs, and we would like to encourage others to
share their source code if they decide to build upon our work.

From the beginning, however, we knew that making our
software and hardware open source would not be sufficient;
we also had to include logical interfaces through which
researchers could add their own modifications. This is espe-
cially important when designing closed-loop experiments, in
which measured activity is used to determine the time and/
or type (e.g. electrical [2, 3], optogenetic [4, 5], or environ
mental [6]) of perturbation fed back into the system under

investigation. The space of potential closed-loop perturbations
is enormous, so each experiment will likely require a unique
protocol. In our view, an open-source model will help bring
closed-loop paradigms into mainstream neuroscience. Tools
that are well designed, open-source, and modular can enable
scientists to make adjustments to fit the needs of their indi-
vidual research programs.

Just as importantly, closed-loop experiments change the
nature of how an experiment needs to be published and shared
(figure 1). With ‘open-loop’ experiments, only the details of
the experimental setup, a description of the analysis methods,
and a graphical representation of the data are the ‘scientific
product’ that is made public. Although it is becoming increas-
ingly common for scientists to share their analysis code as
well, the code itself is not generally expected to be shared
in order to make sense of the conclusions of a given study.
In contrast, closed-loop experiments are defined by the algo-
rithm used to perturb neural activity and all resulting data are
uninterpretable without access to this algorithm. Therefore,
closed-loop algorithms need to be published and shared in
full. This presents a technical challenge because these algo-
rithms interact intimately with many other parts of the data
acquisition system. This issue will become much easier to
solve if neuroscientists adopt open standards that allow them
to share and reuse algorithms for closed-loop control.

Our solution to this problem was to build the Open
Ephys GUI around a plugin architecture. The GUI’s signal
processing chain is configured in a modular fashion, using
modules which can be written, compiled, and distributed sep-
arately from the main ‘host’ application, thanks to a common
data passing interface. This paradigm is commonly used in
applications for music production, in which software instru-
ments (signal generators) and effects (signal processors) can
be mixed and matched. Anyone can write new plugins for the
most common digital audio workstations (the host applica-
tions), and the same plugins can be loaded into multiple host
applications at runtime. We felt that a similar approach applied
to the domain of extracellular electrophysiology would allow
scientists to maximize the flexibility of their experiments,
while simplifying the process of publishing and sharing their
modifications.

Below, we describe the GUI and its associated open-source
hardware in the following sections:

	 •	Overview of the GUI
	 •	Plugin architecture
	 •	Compatible hardware
	 •	Application: closed-loop stimulation of hippocampus
	 •	Advantages and disadvantages of Open Ephys
	 •	Comparison to other open-source data acquisition

systems
	 •	Future directions

Overview of the GUI

The Open Ephys GUI was created, first and foremost, as a
software interface for running and monitoring extracellular

J. Neural Eng. 14 (2017) 045003

http://www.juce.com
http://www.juce.com
https://gihub.com/open-ephys
https://open-ephys.atlassian.net
http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.tapr.org/ohl.html

J H Siegle et al

3

electrophysiology experiments. The user interface consists of
four main elements (figure 2):

	 •	The control panel, at the top of the main application
window, holds buttons to toggle acquisition and recording,
a clock to track the amount of time spent acquiring data,
controls for audio output and recording parameters, and
displays that indicate CPU usage and available disk
space.

	 •	The processor list, at the left of the main application
window, contains a list of data processing modules avail-
able for constructing the signal chain. These are organized
as ‘Sources,’ ‘Filters,’ ‘Sinks,’ and ‘Utilities.’

	 •	The editor viewport, at the bottom of the main applica-
tion window, provides access to the parameter editors
for every processing module in the signal chain. Here,
the user can control which channels are recorded and
monitored, as well as alter custom settings for individual
modules.

	 •	The data viewport, which fills the remaining space in
the main application window, holds tables for visualizers,
as well as a graph that displays the layout of the signal
chain at a glance.

When the GUI is launched for the first time, the user must
configure the signal chain from scratch. The user interface
for creating the signal chain is modeled after that of Ableton
Live, a widely used audio production application [7]. Users
drag and drop modules from the processor list onto the editor
viewport to build a processing pipeline from left to right. Each
module is meant to serve a precise, well-defined purpose,
such as communicating with an external piece of hardware,
extracting spike waveforms from an incoming data stream, or
visualizing data in a specific way. This allows a data stream to
be customized for each experiment, and encourages re-use of
modules with commonly needed functions. The signal chain
can be split or merged at any point, allowing multiple pro-
cessing streams to run in parallel. Data can be saved from any
module in the signal chain, a critical feature for monitoring

Figure 1.  Comparing open-loop and closed-loop experiments. In open-loop experiments (top), perturbations are carried out ‘blindly,’
without taking brain state into account. In closed-loop experiments (bottom), algorithms are used to update the perturbation in real time,
based on the state of the brain at a given moment. Building closed-loop experiments on top of an open platform is essential for interpreting
and reproducing their results.

J. Neural Eng. 14 (2017) 045003

J H Siegle et al

4

how individual processing elements behave during closed-
loop experiments. On a given processing cycle, each module
is handed a buffer of continuous data (typically around 20 ms
long) and a buffer of events (including spikes) that occurred
within the same timespan. Any modifications that a module
makes to those buffers are automatically passed to the next
module in the signal chain.

The GUI is built upon the JUCE Toolkit (www.juce.com),
JUCE is a well-supported open-source development framework
that provides the core C++ classes for data handling and cre-
ating versatile user interfaces. Thanks to JUCE, the GUI runs
equally well on Windows, Linux, and Mac, with minimal need
for code specialization across the three operating systems. JUCE
was originally written to facilitate the development of high-
performance audio processing applications. We have adapted
many of its audio-specific functions to process neural data.
Audio data is typically handled at 44.1 kHz and 16 bits, which
is very similar to the ~30 kHz, 16 bit data streams that are
the standard for most extracellular electrophysiology experi-
ments. The GUI uses JUCE to interface with the computer’s
audio card, which generates the precise timing signals required
to ensure that the signal processing chain can keep up with the
incoming data stream.

For most electrophysiology experiments, the user will need
to visualize the continuous local field potential, or LFP, from
all channels in order to assess electrode placement and signal
quality. The GUI includes an ‘LFP Viewer’ module that dis-
plays the signal from each recording site in real time (figure 2).
The LFP Viewer streams data from left to right, like an oscil-
loscope, for windows of 0.25–10 s. Depending on the filter

settings of the hardware and software, the LFP Viewer can
be used to display spike waveforms as well as low-frequency
signals.

Many experiments also require the detection and display
of spike waveforms in real time. The GUI separates this func-
tionality across three modules: a Filter Node, a Spike Detector,
and a Spike Viewer. The Filter Node streams the incoming data
through a bandpass filter; the default settings are 300 Hz for the
low cut and 6000 Hz for the high cut. This allows the data to be
thresholded by the Spike Detector, in order to extract the wave-
forms of candidate spikes. The Spike Detector can detect spikes
on single electrodes, stereotrodes (two linked channels), or tet-
rodes (four linked channels). These spikes are sent as events—
in parallel to the continuous data stream—to the Spike Viewer,
which displays waveforms and peak-height projection plots
for stereotrodes and tetrodes. The flexible plugin architecture
also makes it possible to implement more sophisticated real-
time spike analysis algorithms. For example, the Spike Sorting
module, which encapsulates spike detection, visualization, and
sorting into one module, can be used in real time to isolate
single-unit activity based on spike shape. This feature is criti-
cally important for many acute experiments in which the isola-
tion and characterization of single units in real-time is required.

The GUI has been optimized for multi-channel extracellular
electrophysiology experiments that use twisted-wire tetrodes
[8, 9] or silicon probes [10, 11] to detect voltage fluctuations
inside the brain. Our primary target audience is researchers
that use these implantable devices in nonhuman model organ-
isms, although the flexible nature of the GUI makes it com-
patible with other sources of continuous voltage traces, such

Spike Viewer
Displays waveforms and
projection plots for
tetrodes, stereotrodes, or
single electrodes. Can
exist as a tab in the main
window, or as a separate
window.

LFP Viewer
Displays continuous
waveforms with
events overlaid
(translucent yellow
bar).

Processor list
Displays a list of
available sources,
filters, sinks, and
utilities which can be
used to construct the
signal chain.

Control panel
Holds buttons for toggling acquisition
and recording, as well as indicators for
disk space and CPU usage.

Editor viewport
Holds the editors for the
current signal chain,
which allow the user to
change processor
parameters in real time.

Figure 2.  Layout of the Open Ephys graphical user interface (GUI). The major components of the software are labeled. The layout is
very flexible; the Processor List and Editor Viewport can be hidden when not in use, and any visualizers can either inhabit a table within
the main window or their own floating window. The software runs on Windows, Linux, and Mac OS X. Pre-compiled executable files are
available at open-ephys.org, and the source code can be viewed on GitHub (github.com/open-ephys/plugin-GUI).

J. Neural Eng. 14 (2017) 045003

http://www.juce.com

J H Siegle et al

5

as human scalp EEG. By creating new software plugins, the
GUI could be used as an interface for existing EEG hardware
from companies such as OpenBCI (http://openbci.com), g.Tec
(www.gtec.at), or EMOTIV (www.emotiv.com).

To obtain the software, executable files for the GUI can be
downloaded from the Open Ephys website (http://open-ephys.
org/gui). Alternatively, the GUI can be compiled from the source
code downloaded from GitHub (https://github.com/open-ephys/
plugin-GUI). On Windows, compiling the GUI requires Visual
Studio; on Mac, Xcode is required; on Linux, the standard GNU
command-line tools (e.g. make, gcc) are sufficient. Development
of the GUI occurs in a distributed fashion at institutions around
the world. Efforts are coordinated via GitHub, as well as the
Open Ephys mailing list (open-ephys@googlegroups.com).

Plugin architecture

To ensure that the GUI can be adapted to the requirements of
different experiments, we constructed it around a plugin archi-
tecture. Under this paradigm, everyone using the GUI shares the
same host application, while data processing modules are com-
piled separately and loaded from within the host application by
the user when desired. This means that the core application can
remain free of the library dependencies introduced by the plugins.

A variety of useful plugins are provided when the applica-
tion is downloaded (table 1). New modules can be built indi-
vidually and distributed as binary files, provided they were

compiled on the same operating system as the host applica-
tion. The plugins are shared as dynamically loaded libraries
(DLLs) on Windows, dynamic libraries (DYLIBs) on Mac,
and shared objects (SOs) on Linux.

All plugins are classified at either Sources, Filters, and
Sinks (figure 3):

	 •	Sources bring data into the signal chain by filling an
empty buffer of continuous samples and an empty buffer
of events on each processing cycle. There is an option
of creating a separate thread for each source, which
simplifies the process of communicating with external
devices that run on a different clock than the host applica-
tion. Data acquired via the thread will be automatically
fed into the GUI’s signal chain. Example sources include
the ‘Rhythm FPGA’ thread, which communicates with
hardware devices running Intan’s Rhythm firmware (see
next section); the File Reader, which loads data from
a file; and the Network Source, which receives events
from another computer. If a developer wishes to create a
Source module that interfaces with proprietary hardware,
they can do so by calling a separate, closed-source DLL
to communicate with the device.

	 •	Filters modify the incoming data stream in some way
or detect events in the continuous data, such as spikes
or oscillations. Example filters include the Filter Node,
which applies a bandpass filter to all channels; the
common average reference (CAR), which subtracts the

Table 1.  Available plugins. List of plugins currently included with the Open Ephys GUI.

Type Name Function

Source Rhythm FPGA Reads data from a device running Intan’s Rhythm FPGA firmware; includes the Open Ephys
acquisition board and the Intan RHD2000 Evaluation Board.

File Reader Reads data from a file.
Network Events Reads events from a TCP port, either from another program running locally, or another

machine. Can be used to signal the start of an experimental epoch or stimulus condition.
Serial Port Reads data from a serial port. Can be used to track eye position or location in a virtual maze.

Filter Spike Detector Extracts spike events from continuous data.
Common Avg Ref Subtracts the average of all channels or a subset of channels. Can be used to remove

common-mode noise from a recording.
Channel Map Re-orders channels in continuous data.
Bandpass Filter Filters data between two frequencies.
Phase Detector Emits events when it detects peaks, troughs, or zero-crossings in a continuous signal.
Rectifier Outputs the absolute value of a continuous signal.
Spike Sorter Extracts spike events from continuous data, and allows the user to define unit boundaries in

PCA or waveform space.
Sink Arduino Output Events within the GUI are used to trigger digital pulses from an Arduino microcontroller

(www.arduino.cc)
Spike Viewer Displays spike waveforms and peak heights for stereotrodes and tetrodes.
Event Broadcaster Broadcasts events over a network connection.
LFP Viewer Displays continuous signals.
Pulse Pal Events within the GUI are used to trigger channels on a Pulse Pal, an open-source

stimulation device (www.sanworks.io)
Record engine Open Ephys Format Fault-tolerant data format designed for the Open Ephys GUI

Binary Format Flat binary file of int16s
NWB Format Neurodata Without Borders, an HDF5-based format designed to facilitate data-sharing for

neurophysiology expriments
Kwik Format An HDF5-based format designed for KlustaKwik.

J. Neural Eng. 14 (2017) 045003

http://openbci.com
http://www.gtec.at
http://www.emotiv.com
http://open-ephys.org/gui
http://open-ephys.org/gui
https://github.com/open-ephys/plugin-GUI
https://github.com/open-ephys/plugin-GUI
http://www.arduino.cc
http://www.sanworks.io

J H Siegle et al

6

average signal to remove artifacts; and the Spike Detector,
which emits spike events whenever a threshold crossing
is detected on a particular channel or subset of channels.

	 •	Sinks interface with elements outside the signal chain,
such as a display, a stimulation device, or a network port.
Example sinks include the LFP Viewer, which allows
the user to visualize continuous data streams; the Spike
Viewer, which displays spike waveforms in real time; and
the Pulse Pal Output, which uses events to trigger stimu-
lation from a Pulse Pal, an open-source pulse generator
created by Josh Sanders of Sanworks (www.sanworks.
io).

In addition to Sources, Filters, and Sinks, it is also possible
to create plugin ‘Record Engines’ and ‘File Sources.’ Record
Engines and File Sources specify how continuous, spike, and
event data is written to or loaded from disk, and make it pos-
sible for users to customize the data format of the GUI. The
GUI already includes four Record Engines, which specify the
output data formats:

	(1)	The Open Ephys Format, the default format, is a fault-
tolerant format built specifically for the GUI. This format
saves the data in blocks of 1024 samples, each of which
includes a timestamp and a readily identifiable ‘record
marker,’ so that data can still be recovered if part of the
file becomes corrupted.

	(2)	The Binary Format saves continuous data as flat files of
int16s, and is used by the spike sorting package Kilosort
[12].

	(3)	Neurodata without borders (NWB) is an HDF5-based
format designed to facilitate data sharing between neuro-
physiology laboratories [13].

	(4)	Kwik is a deprecated HDF5-based format originally devel-
oped for the KlustaKwik suite of spike sorting tools [14].

More information on data formats can be found on the
Open Ephys wiki (https://open-ephys.atlassian.net/wiki/
display/OEW/Data+format).

One important challenge when designing the plugin system
was the application programming interface (API), which
plugins use to communicate with the GUI. Since few neuro-
scientists are proficient with software development, the basic
methods and workflow to create a plugin need to be straight-
forward and easy to understand. At the same time, the inter-
face must also be flexible enough that it does not impose too
many limitations on plugin capabilities.

To address this issue, we created a complete C++ interface
for plugins, instead of using more traditional C-based plugin
libraries. While this does impose some restrictions, such as
the need to build the plugins with the same compiler as the
core GUI, it makes it possible for plugins to take advantage
of the class inheritance capabilities of C++. At its core, every
plugin is simply a C++ class derived from a base class which
contains all the needed functions for the plugin to integrate
with the GUI. A plugin developer must only provide overrides
to a small set of virtual methods to have a working processor.
At the same time, there exist a number of optional methods,
already defined in the base classes, that can be redefined in the
plugin to achieve more complex functionality. C++ inherit-
ance structure also allows the base classes to provide easy-
to-use helper methods without the need for the programmer
to know the internal implementation details. The use of a
C++ interface also prevents bloating of the compiled bina-
ries for the GUI and the modules. Initial implementations of
the plugin architecture required compiling the JUCE library
with each individual plugin, leading to significant increases in
compiled binary sizes. The C++ interface removes the need
to re-compile JUCE with each plugin and allows each plugin
to directly access the JUCE classes through the GUI. This,

Figure 3.  The Open Ephys plugin architecture. The Open Ephys GUI allows users to process data using a flexible, modular signal chain.
‘Source’ modules (orange) can be swapped out to allow the signal chain to receive data from different sources. ‘Filter’ modules (blue)
can be mixed and matched to determine the real-time data processing steps that occur. And ‘Sink’ modules (green) can be used to control
external hardware, such as a visual display or a stimulating laser.

J. Neural Eng. 14 (2017) 045003

http://www.sanworks.io
http://www.sanworks.io
https://open-ephys.atlassian.net/wiki/display/OEW/Data﻿+﻿format
https://open-ephys.atlassian.net/wiki/display/OEW/Data﻿+﻿format

J H Siegle et al

7

coupled with the designed inheritance scheme, allows plugins
to integrate seamlessly into the host application, both from a
developer’s and end-user’s perspective.

To further simplify up the process of developing new
plugins, we provide a Plugin Generator GUI. The Plugin
Generator allows developers to walk through the process
of plugin creation and configuration with a user-friendly
visual interface. The application gives users the opportunity
to specify the type of plugin they wish to create (Source,
Filter, Sink, Record Engine, File Source), the name of the
plugin, and the parameters that can be accessed by the user
(boolean, continuous, or discrete). Once the configuration is
finished, the Plugin Generator automatically generates the
C++ header and implementation files needed to build the
plugin. The Plugin Generator allows user to easily change
the plugin’s UI: they can add control components (sliders,
buttons, etc) that can be bound to any of the plugin’s param
eters, change the look and feel of all components at once,
or create the plugin’s layout using one of the provided tem-
plates. From that point, the developer needs only to add
C++ code into the ‘process’ method to define the plugin’s
functionality.

Those wishing to develop new plugins are encouraged to
explore the following resources on our wiki:

	 •	An overview of the plugin architecture (https://open-ephys.
atlassian.net/wiki/display/OEW/Plugin+architecture)

	 •	A tutorial for adding new plugins (https://open-ephys.
atlassian.net/wiki/display/OEW/Tutorial%3A+Add+a+
custom+processor)

	 •	Instructions for using the Plugin Generator (https://open-
ephys.atlassian.net/wiki/display/OEW/Plugin+Generator)

The process of checking which plugins are present and
loading them is handled by a Plugin Manager class inside
the host application. Since the Open Ephys GUI is frequently
being improved, the plugin API may sometimes be updated,
thus rendering plugins incompatible. The Plugin Manager’s
loading process includes a version check that ensures that
all loaded plugins are compatible with the current version of
the GUI, and informs the user when a plugin’s API does not
match that of the host applications.

The GUI makes it easy for signal chains to be saved and
re-loaded at runtime, but this may not be possible when
signal chain configurations are shared with other users
who do not have the same plugins available. In this case,
the Plugin Manager inserts a dummy processor into the
chain with information about the required plugin. The user
can then locate the plugin or decide to do without it. Data
acquisition cannot proceed unless the dummy processor is
replaced or removed.

Together, the modularity of the GUI, API, and Plugin
Generator simplify the development process for users. If a
module with the desired functionality is not available, a user
can create a new one by copying the source code for any
existing module and changing the functionality to suit their
requirements. There is no need to understand the inner work-
ings of the entire application (figure 4). Only knowledge of
the standardized interfaces for passing data between modules

is required, allowing the GUI to be modified by users with
varying levels of programming skill. As of January 2017, the
GUI’s source code has been forked 130 times on GitHub, and
10 different research groups have contributed plugins to the
main repository.

Compatible hardware

The Open Ephys GUI was designed to be agnostic to the
origin of the incoming data. By creating a new Source plugin,
it is possible to interface with virtually any hardware device
that generates regularly sampled multichannel data. By swap-
ping out the source modules, one can use an identical signal
chain with a variety of different inputs.

Although they have the option to develop new Source
plugins, most users prefer to collect data with the Open Ephys
acquisition board, an open-source interface between up to 8
Intan amplifier chips and a computer’s USB port (figure 5(a)).
Intan chips encapsulate much of the functionality of traditional
data acquisition systems inside a 8  ×  8 mm package [15, 16].
Open Ephys uses Intan’s RHD-series chips, first released in
2012, which include a bank of analog filters and amplifiers for
each of 32 or 64 channels. The filtered and amplified signals
are sent to a multiplexer, which connects them one by one to
an analog-to-digital converter. Samples of each channel are
represented as 16-bit integers, which are transmitted serially
over a wire tether. The use of low-voltage differential sign-
aling (LVDS) facilitates reliable data transmission over long,
thin conductors.

Headstages compatible with the Open Ephys system con-
sist of one or more Intan chips, an ‘electrode-facing’ con-
nector, and a ‘tether-facing’ connector. The electrode-facing
connector must include one conductor for each electrode,
which has electrical continuity with one of the inputs on
the Intan chip. The tether-facing connector must be a 12-pin
Omnetics connector (product #A79623-001) that interfaces
with cables conforming to the Intan SPI standard (www.intan-
tech.com/RHD2000_SPI_cables.html).

Most of the existing headstage designs (either from Open
Ephys or Intan) use 16 or 32-channel Omnetics connectors
with 0.025″ pitch on the electrode-facing end. These connec-
tors are already widely adopted in neuroscience, due to the
reliability of their connection over a high number of mating
cycles. Because they use the same reference and ground con-
figuration, these headstages can be immediately swapped
in for headstages made by Plexon, Neuralynx, Blackrock,
Ripple, and Triangle Biosystems. Because the headstage
designs are open source, it is possible to create versions that
interface with other types of connectors. Recently, an isolation
and waterproofing system was developed to make Intan-based
headstages safe to use in clinical applications with high-
density ECoG arrays [17].

The Open Ephys acquisition board provides four head-
stage ports, each of which can interface with up to two Intan
chips. If eight 64-channel chips are used, a total of 512
channels can be recorded simultaneously. Data acquisition
is driven by an Opal Kelly XEM-6310 FPGA module, run-
ning a modified version of Intan’s Rhythm FPGA firmware

J. Neural Eng. 14 (2017) 045003

https://open-ephys.atlassian.net/wiki/display/OEW/Plugin﻿+﻿architecture
https://open-ephys.atlassian.net/wiki/display/OEW/Plugin﻿+﻿architecture
https://open-ephys.atlassian.net/wiki/display/OEW/Tutorial%3A+Add+a+custom+processor
https://open-ephys.atlassian.net/wiki/display/OEW/Tutorial%3A+Add+a+custom+processor
https://open-ephys.atlassian.net/wiki/display/OEW/Plugin﻿+﻿Generator
https://open-ephys.atlassian.net/wiki/display/OEW/Plugin﻿+﻿Generator
http://www.intantech.com/RHD2000_SPI_cables.html
http://www.intantech.com/RHD2000_SPI_cables.html

J H Siegle et al

8

(https://github.com/open-ephys/rhythm). The FPGA
ensures that data acquisition is synchronized between all of
the Intan chips, and serializes the data for transmission via
a USB 3.0 port.

The acquisition board can be synchronized with external
devices via I/O boards, which are connected to the main board
via standard HDMI cables. The I/O boards provide BNC ter-
minal connectors for up to eight  ±  5 V analog signals, or eight
5 V digital signals. These auxiliary inputs are sampled at the
same rate as the neural data, typically 30 kHz.

The Open Ephys acquisition board has been used by over
100 labs to collect data from a variety of model organisms
(figure 5(b)). Based on feedback from these users, as well as
direct comparisons with commercial data acquisition hard-
ware (www.open-ephys.org/blog/2014/7/9/open-ephys-and-
neuralynx-a-head-to-head-comparison), we are confident
that Open Ephys data quality is at least as good as that of
proprietary systems. In addition, many commercial vendors
now use Intan chips to drive data acquisition, meaning their
analog signal processing front-end is identical to that of
Open Ephys.

Application: closed-loop stimulation
of hippocampus

The GUI’s real-time feedback engine is built on top of JUCE’s
audio processing library, which can handle complex floating
point data processing steps in real time. The requirements
for audio processing—in terms of sample rate, bit depth, and
channel count—are in a similar range as those for neural data.
We were therefore able to develop closed-loop stimulation
algorithms on top of the existing JUCE classes. The basic
approach involves creating a Filter plugin that can detect
events in the neural data, then using a Sink plugin to control
external hardware capable of delivering feedback to the brain.

One of the first experiments we carried out demonstrated
the efficacy of Open Ephys for closed-loop stimulation
(figure 6(a)). In the lab of Matthew Wilson at MIT, we created
a software module that could detect different phases of the
hippocampal theta rhythm in real time, and deliver optoge-
netic stimulation with a ~20 ms delay (1/6th of an ~8 Hz
theta cycle). Closed-loop feedback allowed us to probe the
function of theta rhythms with enhanced precision relative

Figure 4.  Internal structure of the Open Ephys GUI. (a) Diagram of the major C++ classes that comprise the GUI. Words in black
are names defined by the GUI; words in grey are JUCE classes on top which these components are built. The ‘ProcessorGraph’ is the
class in which the signal chain is built. Developers can add new functionality by creating new plugins (Sources, Filters, or Sinks) for the
ProcessorGraph, without needing to understand the structure of the rest of the application. (b) Example plugin code for implementing a
rectifier. Only the code that is shown in the example needs to be edited to implement a minimal working plugin.

J. Neural Eng. 14 (2017) 045003

https://github.com/open-ephys/rhythm
http://www.open-ephys.org/blog/2014/7/9/open-ephys-and-neuralynx-a-head-to-head-comparison
http://www.open-ephys.org/blog/2014/7/9/open-ephys-and-neuralynx-a-head-to-head-comparison

J H Siegle et al

9

to previous open-loop interventions [4]. Carrying out this
experiment involved the use of four plugins: (1) a Rhythm
FPGA module, to acquire neural data from the Open Ephys
acquisition board; (2) a Bandpass Filter module, to filter
the incoming data in the theta range (4–12 Hz); (3) a Phase
Detector module, to emit events at the peaks and troughs of
the theta wave; and (4) a Pulse Pal module, to convert GUI
events into 10 ms pulses capable of driving an external blue
LED (Plexon). The LED was coupled to a fiber optic cable
that terminated near the recording site, which resulted in
phase-specific optogenetic stimulation of hippocampal inhib-
itory interneurons.

Minimum closed-loop latencies are constrained by both
the size of the software buffer and the USB communication
protocol. The software buffer determines the number of con-
tinuous data samples that are delivered to the plugins on each
processing cycle. The default buffer size is 21 ms, but it can
be manually configured at runtime to be anywhere between
3 ms and 42 ms. Decreasing the buffer size will lower the

upper bound on closed-loop response times, but will increase
the chance that processing will not be completed on a given
callback. If the signal chain includes a high number of chan-
nels or complex closed-loop algorithms, a larger buffer may
be necessary. To ensure that all buffers can be processed
safely, the GUI includes a visual CPU meter that displays the
amount of time spent processing each buffer as a percentage
of the overall buffer size. So, if it takes 3 ms to process a 21 ms
buffer, the CPU meter will be at 14%.

In addition to the software buffer, closed-loop latencies
also limited by delays inherent in the USB communication
protocol. When using the Open Ephys acquisition board, data
is sent to the GUI in 10 ms chunks. Thus, even when a soft-
ware buffer of 5 ms is used, mean closed-loop latency is still
around 10 ms (figure 6(b)). There is substantial handshaking
overhead involved in each transfer, so lowering the chunk size
does not lead to a decrease in latency. This limitation can be
overcome by using a faster hardware data transfer interface,
such as Ethernet or PCI express.

a

b

1

2

3

4

Figure 5.  Open Ephys hardware and example recordings. (a) A typical hardware configuration include an acquisition board (1), computer
running the Open Ephys GUI (2), an I/O board for synchronization with external devices (3), and a headstage containing an Intan chip that
interfaces with electrodes implanted in the brain (4). Photo credit: Jeff Henkel. (b) 1 s of example data from three model organisms: mouse
barrel cortex (top), macaque neocortex (middle), and zebra finch LMAN (bottom).

J. Neural Eng. 14 (2017) 045003

J H Siegle et al

10

Although implementing closed-loop algorithms on data
transmitted via USB involves inherent and uncertain delays
of approximately 20 ms, these latencies are acceptable for a
wide range of applications. The ability to trigger stimulation
based on brain states opens up a large class of experiments
that are not accessible to the typical neuroscientist. These
include protocols for implementing brain machine interfaces
[18, 19], adaptive sampling of a stimulus space [20, 21], and
entrainment or disruption of intrinsic oscillations [6, 22–24].
Making closed-loop experiments feasible for a wider range
of researchers was one of the primary goals of developing the
Open Ephys GUI. Having real-time access to data in software
also makes it easier to prototype feedback algorithms that
can later be transferred to hardware. And for certain types of
experiments, such as real-time decoding of spike trains, hard-
ware implementations are impractical due of the complexity
of the generalized linear models or Bayesian inference algo-
rithms required [25, 26].

Advantages and disadvantages of Open Ephys

For labs looking to purchase a new multichannel electrophysi-
ology system, Open Ephys offers three advantages over its
closed-source commercial counterparts:

	 •	Low cost. A complete Open Ephys system can be obtained
for less than $100 per channel, compared to commercial
systems costing $1000 per channel or more. For labs on
a tight budget, Open Ephys may be the only option for
setting up high-channel-count experiments. For labs that
want to add recording capabilities to multiple rigs in par-
allel, our system is an attractive choice. As the throughput
of systems neuroscience research continues to expand—
both in terms of the number of simultaneously recorded
channels, and the number of subjects per experiment—
Open Ephys may be the best choice for growing a lab’s
electrophysiology resources.

Figure 6.  Closed-loop feedback with the GUI. (a) The first published closed-loop experiment carried out with Open Ephys. An electrode
implanted in the CA1 region of mouse hippocampus was used to trigger an LED light pulse that activated local inhibitory neurons on the
peak of the theta oscillation. The flexibility of the Open Ephys software made it straightforward implement the closed-loop algorithm
for detecting peaks of the theta wave. Figure adapted from [4]. CC BY 4.0. (b) Histograms of round-trip (event-to-stimulation) latencies
for different software buffer sizes. Mean latencies are shown as vertical blue lines. Input signal: 100 Hz sine wave passed through a
128-channel silicon probe in saline, sampled for 30 s at 30 kHz with the Open Ephys acquisition board. Stimulation occurred on each peak
of the sine wave (Phase Detector plugin) using an Arduino Uno communicating via USB (Arduino Output plugin). Clustering around two
to three values is likely due to the use of a regularly spaced input signal (100 ms between peaks).

J. Neural Eng. 14 (2017) 045003

https://creativecommons.org/licenses/by/4.0/

J H Siegle et al

11

	 •	Transparency. Because the designs are freely available,
Open Ephys encourages scientists to look ‘under the
hood’ and understand the details of its implementation.
This not only makes for a better-educated user base, but
also alleviates the dependency on a particular company
to upgrade functionality or fix bugs. The one caveat to
this is the Intan amplifier chips in the headstages, which
do contain highly customized proprietary technology.
But this is also a problem for the numerous commercial
companies that are using Intan chips in their hardware.

	 •	Flexibility. Not only is our hardware and software
completely open source, but it was designed from the
start with modularity in mind. The acquisition board is
compatible with many types of headstages, and the
software is built around processor modules that can be
swapped in and out independently. Hardware and software
modules designed by various labs can be made immedi-
ately accessible to the broader community, reducing the
amount of time spent on redundant development. It is
highly possible that, in the future, Open Ephys hardware
will be widely used with a different piece of software. Or,
the hardware could be made obsolete by new technolo-
gies, but the software will live on as a separate entity.

Of course, there are several drawbacks of our platform that
must be taken into consideration:

	 •	No guarantee of support. Open Ephys has grown its
user base substantially in recent years, but we do not have
any full-time employees capable of providing support.
However, there are a number of proficient users around
the world who are often happy to volunteer their time to
answer questions posted on GitHub or the Open Ephys
mailing list.

	 •	Developed by amateur engineers. Open Ephys was
developed by neuroscientists for neuroscientists, which
means some of the design decisions may not be optimal
from an engineering perspective. Anyone who chooses to
use our system must accept responsibility for validating
the features they plan to utilize. This should not be a
substantial burden, but labs that aren’t willing to put in
the extra consideration may be better off buying a com-
mercial system.

	 •	Steeper learning curve. Most commercial recording
systems have a strictly enforced workflow, which enables
users to acquire data by pressing a single button. In its
default state, the Open Ephys GUI cannot record data
without adding at least one processor to the signal chain;
many other common functions require selecting the
appropriate plugins in the correct order. This may not be
intuitive to users accustomed to pre-configured software.

	 •	Performance hit from modular architecture. The
plugin-based design of the Open Ephys GUI carries some
degree of overhead, likely around a few milliseconds per
buffer, although this will be highly context-dependent.
Building the GUI with a more stripped-down architecture
would speed up each processing cycle, but at the cost of
reduced cross- modularity. Programming the GUI for use
with a real-time operating system, as RTXI has done in

their closed-loop electrophysiology software (see next
section), would further reduce processing latencies, but
would force us to forgo cross-platform compatibility.

Comparison to other open-source data acquisition
platforms

How does Open Ephys compare to other open-source
recording platforms? The most similar is NeuroRighter imple-
mented by the Potter Lab at Georgia Tech, but no longer under
development [27, 28]. Like Open Ephys, NeuroRighter offers
open-source hardware and software optimized for multielec-
trode recordings and closed-loop stimulation. NeuroRighter is
more mature, having been in use for over 7 years. However,
there are two aspects of NeuroRighter that make it less flex-
ible than Open Ephys: its reliance on National Instruments
digitization hardware, and its use of the C# programming
language, which is Windows-specific. The former also makes
the system more costly: NeuroRighter costs around $10 000
for 64 channels, whereas a 64-channel Open Ephys system
can be purchased for less than $3000. The use of Intan chips
in our headstages makes Open Ephys more compact and more
affordable. Nevertheless, the success of NeuroRighter was an
inspiration during the early days of developing Open Ephys,
especially their commitment to making tools for delivering
closed-loop feedback more accessible.

The real-time experiment interface (RTXI) [29] is another
mature (10+  years) open-source data acquisition platform
available for intracellular and extracellular electrophysi-
ology (http://rtxi.org). RTXI provides hard real-time closed-
loop control, and has a complete plugin architecture and
development API, with which users have contributed over
50 modules (http://github.com/rtxi). RTXI’s core is written
in C and uses the Qt/QwT GUI frameworks. RTXI’s plugin
architecture is written in C++ and has many similarities to
the Open Ephys plugin architecture. A C++ class called
DefaultGUIModel is abstracted by each custom plugin and
provides virtual methods that can be overloaded to cus-
tomize each state the plugin can be in (initialization, exe-
cution, pause, unload/halt) and the plugin’s input/output
connections. DefaultGUIModel automatically generates a
GUI for the custom plugin when compiled, making it easier
for novice users to create their own custom plugins quickly.
Users interested in adding additional online data visualiza-
tion elements can easily incorporate stock elements from the
Qt and QwT GUI frameworks.

In RTXI, unlike Open Ephys, modules can be compiled
and dynamically loaded and inserted into the signal chain
without halting execution of the system. Template Makefiles
are provided to users to simplify the process of compiling
custom plugins. Loading and unloading of modules into the
RTXI workspace is managed by the core PluginManager
class, which provides a thread-safe mechanism for modifying
the signal chain on-the-fly. Connections between loaded
modules and the data acquisition card channels are created
by connecting an output data stream from the data acquisition
card or a loaded module to the input data stream of another

J. Neural Eng. 14 (2017) 045003

http://rtxi.org
http://github.com/rtxi

J H Siegle et al

12

module of data acquisition card channel. RTXI is feature-rich
and flexible, with a mature plugin architecture and develop-
ment API. However, its key limitation is the dependence upon
commercial hardware (e.g. National Instruments) for data
acquisition.

More recently, the Boyden Lab at MIT, in collabora-
tion with LeafLabs, developed an open-source, open-loop
1024-channel recording system called Willow [30]. Willow
also uses Intan chips to handle the front-end amplification and
filtering, but it sends the data directly to a solid-state drive,
bypassing the need for a separate computer to acquire data.
A copy of the data can also be sent over Ethernet for real-
time visualization. Willow is optimized for reliability when
recording high channel counts, but it lacks the modularity and
extensibility of Open Ephys at the software level.

At least two commercial data acquisition platforms pro-
vide open-source software: Ripple, LLC (http://rippleneuro.
com) and SpikeGadgets (www.spikegadgets.com/main/home.
html). This makes it easier for users to modify the software
to suit their needs, and to better understand how their data is
being processed. However, without a modular, plugin-based
architecture, modifications are not as straightforward to make
or share as they are with Open Ephys.

A key advantage of open-source tools is that they can
generally be made to interoperate. If someone had the need
for it, they could make Open Ephys interface with any of the
platforms listed above. Our hardware is meant to be hacked,
so we have made the necessary details of the communication
protocols available to all. Likewise, the software was intended
to be used with a variety of data sources. Creating a module to
interface with a different type of hardware is a straightforward
process, given adequate knowledge of C++.

Future directions

Our biggest challenge is further lowering the barrier to entry
for creating new plugins for the Open Ephys GUI. Currently,
developing a new module requires knowledge of C++, a
low-level programming language that is not typically taught
to neuroscientists. Researchers in systems neuroscience are
more often familiar with high-level languages, such as Python,
Julia, and Matlab. By making plugin development compat-
ible with these languages, Open Ephys has the opportunity
to take advantage of the massive amount of existing analysis
code. Our software is already plugin-based and highly mod-
ular. Once we make it interface with programming languages
everyone already uses for data analysis, this analysis code can
be turned into modules for running closed-loop experiments.

Another limitation of the Open Ephys platform is the
relatively high closed-loop roundtrip times necessitated by
our use of the USB port for data transmission (~20 ms). By
switching to a PCI express (PCIe) interface, which is included
in most desktop computers and has a much higher bandwidth
than USB, it will be possible to reduce roundtrip times to
less than a millisecond. A prototype PCIe-based acquisition
system is currently under development, which will be able to
stream thousands of channels to the GUI with latencies in the

hundreds of microseconds. Having access to the data on these
timescales opens up even more possibilities for closed-loop
feedback [31].

In general, our goal for the future is to make it as simple as
possible for scientists to create new plugins for the GUI and to
modify its existing functionality. Plugins should be able to be
written in high-level languages and provide access to the data
within a few samples, rather than the ~20 ms blocks of sam-
ples that are currently required. Given the convenience of a
plugin architecture for building and sharing real-time analysis
algorithms, we hope that Open Ephys will help to lower the
barriers for electrophysiologists who wish to carry out closed-
loop experiments in their labs.

Acknowledgments

We wish to thank the founders of the Allen Institute for
Brain Science, Paul G. Allen and Jody Allen, for their vision,
encouragement and support. We wish to thank Caleb Kemere,
Christopher Moore, and Matthew Wilson for their work on
the Open Ephys board of directors. We would like to thank
Konstantinos Meletis and Marie Carlen for their donations
to Open Ephys early in the development process. We thank
Filipe Carvalho of the Champalimaud Institute and Andrew
Seddon and Melissa Hough of CircuitHub, Inc. for helping
with hardware distribution. We would like to thank Adam
Kampff and Gonçalo Lopes for organizing open-source dis-
cussions. We thank Galen Lynch for zebrafinch recordings
and Jon Newman for advice and inspiration. Finally, we
would like to thank all users and developers for their invalu-
able contributions to testing and improving the Open Ephys
toolkit.

Conflict of interest

JHS and JV are co-founders and board members of Open
Ephys, Incorporated, a Massachusetts-based nonprofit. They
do not receive any financial compensation as a result of their
involvement. Revenue from the sale of Open Ephys acquisi-
tion boards is used to fund an annual stipend for ACL. KA was
mentored by JHS as part of Google Summer of Code 2016,
which provided a stipend for KA.

References

	 [1]	 Gewaltig M O and Cannon R 2014 Current practice in
software development for computational neuroscience and
how to improve it PLoS Comput. Biol. 10 e1003376

	 [2]	 Ego-Stengel V and Wilson M A 2010 Disruption of ripple-
associated hippocampal activity during rest impairs spatial
learning in the rat Hippocampus 20 1–10

	 [3]	 Jadhav S P, Kemere C, German P W and Frank L M 2012
Awake hippocampal sharp-wave ripples support spatial
memory Science 336 1454–8

	 [4]	 Siegle J H and Wilson M A 2014 Enhancement of encoding
and retrieval functions through theta phase-specific
manipulation of hippocampus eLife 3 e03061

J. Neural Eng. 14 (2017) 045003

http://rippleneuro.com
http://rippleneuro.com
http://www.spikegadgets.com/main/home.html
http://www.spikegadgets.com/main/home.html
https://doi.org/10.1371/journal.pcbi.1003376
https://doi.org/10.1371/journal.pcbi.1003376
https://doi.org/10.1002/hipo.20707
https://doi.org/10.1002/hipo.20707
https://doi.org/10.1002/hipo.20707
https://doi.org/10.1126/science.1217230
https://doi.org/10.1126/science.1217230
https://doi.org/10.1126/science.1217230
https://doi.org/10.7554/eLife.03061
https://doi.org/10.7554/eLife.03061

J H Siegle et al

13

	 [5]	 Fong M F, Newman J P, Potter S M and Wenner P 2015
Upward synaptic scaling is dependent on neurotransmission
rather than spiking Nat Commun. 6 6339

	 [6]	 Ngo H V, Martinetz T, Born J and Mölle M 2013 Auditory
closed-loop stimulation of the sleep slow oscillation
enhances memory Neuron 78 545–53

	 [7]	 DeSantis D, Gallagher I, Haywood K, Knudsen R, Behles G,
Rang J, Henke R and Slama T 2013 Ableton Reference
Manual Version 9 (https://www.ableton.com/en/manual/
credits/)

	 [8]	 Gray C M, Maldonado P E, Wilson M and McNaughton B
1995 Tetrodes markedly improve the reliability and yield of
multiple single-unit isolation from multi-unit recordings in
cat striate cortex J. Neurosci. Methods 63 43–54

	 [9]	 Harris K D, Henze D A, Csicsvari J, Hirase H and Buzsáki G
2000 Accuracy of tetrode spike separation as determined by
simultaneous intracellular and extracellular measurements
J. Neurophysiol. 84 401–14

	[10]	 Csicsvari J, Henze D A, Jamieson B, Harris K D, Sirota A,
Barthó P, Wise K D and Buzsáki G 2003 Massively parallel
recording of unit and local field potentials with silicon-
based electrodes J. Neurophysiol. 90 1314–23

	[11]	 Blanche T J, Spacek M A, Hetke J F and Swindale N V 2005
Polytrodes: high-density silicon electrode arrays for
large-scale multiunit recording J. Neurophysiol.
93 2987–3000

	[12]	 Pachitariu M, Steinmetz N, Kadir S, Carandini M and
Harris K D 2016 Kilosort: realtime spike-sorting for
extracellular electrophysiology with hundreds of
channels bioRxiv to be published, https://doi.
org/10.1101/061481

	[13]	 Teeters J L 2015 Neurodata without borders: creating
a common data format for neurophysiology Neuron
88 629–34

	[14]	 Rossant C et al 2016 Spike sorting for large, dense electrode
arrays Nat Neurosci. 19 634–41

	[15]	 Harrison R R and Charles C 2003 A low-power low-noise
CMOS amplifier for neural recording applications IEEE J.
Solid-State Circuits 38 958–65

	[16]	 Harrison R R 2008 A versatile integrated circuit for the
acquisition of biopotentials Custom Integrated Circuits
Conf. 2007 (IEEE) pp 115–22

	[17]	 Hermiz J, Rogers N, Kaestner E, Ganji M, Cleary D,
Snider J, Barba D, Dayeh S, Halgren E and Gilja V 2016
A clinic compatible, open source electrophysiology
system IEEE 38th Annual Int. Conf. of the Engineering

in Medicine and Biology Society https://doi.org/10.1109/
EMBC.2016.7591730

	[18]	 Schwartz A B 2004 Cortical neural prosthetics Annu. Rev.
Neurosci. 27 487–507

	[19]	 Hatsopoulos N G and Donoghue J P 2009 The science of
neural interface systems Annu. Rev. Neurosci. 32 249–66

	[20]	 Paninski L 2005 Asymptotic theory of information-theoretic
experimental design Neural Comput. 17 1480–507

	[21]	 Benda J, Gollisch T, Machens C K and Herz A V 2007
From response to stimulus: adaptive sampling in sensory
physiology Curr. Opin. Neurobiol. 17 430–6

	[22]	 Berényi A, Belluscio M, Mao D and Buzsáki G 2012
Closed-loop control of epilepsy by transcranial electrical
stimulation Science 337 735–7

	[23]	 Paz J T, Davidson T J, Frechette E S, Delord B, Parada I,
Peng K, Deisseroth K and Huguenard J R 2013 Closed-loop
optogenetic control of thalamus as a tool for interrupting
seizures after cortical injury Nat. Neurosci. 16 64–70

	[24]	 Buetfering C, Allen K and Monyer H 2014 Parvalbumin
interneurons provide grid cell-driven recurrent inhibition in
the medial entorhinal cortex Nat. Neurosci. 17 710–8

	[25]	 Lawhern V, Wu W, Hatsopoulos N and Paninski L 2010
Population decoding of motor cortical activity using a
generalized linear model with hidden states J. Neurosci.
Methods 189 267–80

	[26]	 Kloosterman F, Layton S P, Chen Z and Wilson M A 2014
Bayesian decoding using unsorted spikes in the rat
hippocampus J. Neurophysiol. 111 217–27

	[27]	 Rolston J D, Gross R E and Potter S M 2009 A low-cost
multielectrode system for data acquisition enabling real-
time closed-loop processing with rapid recovery from
stimulation artifacts Frontiers Neuroeng. 2 12

	[28]	 Newman J P, Zeller-Townson R, Fong M F, Arcot Desai S,
Gross R E and Potter S M 2012 Closed-loop, multichannel
experimentation using the open-source NeuroRighter
electrophysiology platform Frontiers Neural Circuits 6 98

	[29]	 Lin R J, Bettencourt J, White J A, Christini D J and Butera R J
2010 Real-time experiment interface for biological control
applications Engineering in Medicine and Biology Society
(EMBC), Annual Int. Conf. of the IEEE pp 4160–3

	[30]	 Kinney J P et al 2015 A direct-to-drive neural data acquisition
system Frontiers Neural Circuits 9 46

	[31]	 Voigts J et al 2016 A open-source system and interface
standards for very high data rate neurophysiology and low
latency closed loop experiments Neuroscience 2016 (San
Diego, CA, 12-16 November 2016)

J. Neural Eng. 14 (2017) 045003

https://doi.org/10.1038/ncomms7339
https://doi.org/10.1038/ncomms7339
https://doi.org/10.1016/j.neuron.2013.03.006
https://doi.org/10.1016/j.neuron.2013.03.006
https://doi.org/10.1016/j.neuron.2013.03.006
https://www.ableton.com/en/manual/credits/
https://www.ableton.com/en/manual/credits/
https://doi.org/10.1016/0165-0270(95)00085-2
https://doi.org/10.1016/0165-0270(95)00085-2
https://doi.org/10.1016/0165-0270(95)00085-2
https://doi.org/10.1152/jn.00116.2003
https://doi.org/10.1152/jn.00116.2003
https://doi.org/10.1152/jn.00116.2003
https://doi.org/10.1152/jn.01023.2004
https://doi.org/10.1152/jn.01023.2004
https://doi.org/10.1152/jn.01023.2004
https://doi.org/10.1101/061481
https://doi.org/10.1101/061481
https://doi.org/10.1016/j.neuron.2015.10.025
https://doi.org/10.1016/j.neuron.2015.10.025
https://doi.org/10.1016/j.neuron.2015.10.025
https://doi.org/10.1038/nn.4268
https://doi.org/10.1038/nn.4268
https://doi.org/10.1038/nn.4268
https://doi.org/10.1109/JSSC.2003.811979
https://doi.org/10.1109/JSSC.2003.811979
https://doi.org/10.1109/JSSC.2003.811979
https://doi.org/10.1109/CICC.2007.4405694
https://doi.org/10.1109/CICC.2007.4405694
https://doi.org/10.1109/EMBC.2016.7591730
https://doi.org/10.1109/EMBC.2016.7591730
https://doi.org/10.1146/annurev.neuro.27.070203.144233
https://doi.org/10.1146/annurev.neuro.27.070203.144233
https://doi.org/10.1146/annurev.neuro.27.070203.144233
https://doi.org/10.1146/annurev.neuro.051508.135241
https://doi.org/10.1146/annurev.neuro.051508.135241
https://doi.org/10.1146/annurev.neuro.051508.135241
https://doi.org/10.1162/0899766053723032
https://doi.org/10.1162/0899766053723032
https://doi.org/10.1162/0899766053723032
https://doi.org/10.1016/j.conb.2007.07.009
https://doi.org/10.1016/j.conb.2007.07.009
https://doi.org/10.1016/j.conb.2007.07.009
https://doi.org/10.1126/science.1223154
https://doi.org/10.1126/science.1223154
https://doi.org/10.1126/science.1223154
https://doi.org/10.1038/nn.3269
https://doi.org/10.1038/nn.3269
https://doi.org/10.1038/nn.3269
https://doi.org/10.1038/nn.3696
https://doi.org/10.1038/nn.3696
https://doi.org/10.1038/nn.3696
https://doi.org/10.1016/j.jneumeth.2010.03.024
https://doi.org/10.1016/j.jneumeth.2010.03.024
https://doi.org/10.1016/j.jneumeth.2010.03.024
https://doi.org/10.1152/jn.01046.2012
https://doi.org/10.1152/jn.01046.2012
https://doi.org/10.1152/jn.01046.2012
https://doi.org/10.3389/neuro.16.012.2009
https://doi.org/10.3389/neuro.16.012.2009
https://doi.org/10.3389/fncir.2012.00098
https://doi.org/10.3389/fncir.2012.00098
https://doi.org/10.1109/IEMBS.2010.5627397
https://doi.org/10.1109/IEMBS.2010.5627397
https://doi.org/10.3389/fncir.2015.00046
https://doi.org/10.3389/fncir.2015.00046

